Incorporation of [Co(bpy)3]2+ into the cavities of the three-dimensional oxalate network structure in [Co(bpy)3][LiCr(ox)3] produces chemical pressure that destabilises the normal high-spin ground state 4T1 to such an extent that the [Co(bpy)3]2+ complex becomes a spin-crossover complex. It shows a temperature-dependent equilibrium between the 2E low-spin and the 4T1 high-spin states.
  • Cooperativity in the Iron(II) Spin-Crossover Compound [Fe(ptz)6](PF6)2 under the Influence of External Pressure (ptz = 1-n-Propyltetrazole)
    J. Jeftic, R. Hinek, S.C. Capelli and A. Hauser
    Inorganic Chemistry, 36 (14) (1997), p3080-3087
    DOI:10.1021/ic961404o | unige:2803 | Abstract | Article HTML | Article PDF
The iron(II) spin-crossover compound [Fe(ptz)6](PF6)2 (ptz = 1-propyltetrazole) crystallizes in the triclinic space group P†, with a = 10.6439(4) Å, b = 10.8685(4) Å, c = 11.7014(4) Å, α = 75.644(1)°, β = 71.671(1)°, γ = 60.815(1)°, and Z = 1. In [Fe(ptz)6](PF6)2, the thermal spin transition is extremely steep because of cooperative effects of elastic origin. The transition temperature at ambient pressure is 74(1) K. An external pressure of 1 kbar shifts the transition temperature to 102(1) K, corresponding to a stabilization of the low-spin state, which is smaller in volume. The volume difference between the high-spin and the low-spin state, ΔV°HL, is 24(2) Å3/molecule. The interaction constant Γ, as a measure of cooperativity, is within experimental error independent of external pressure and has a value of 101(5) cm-1. In contrast to the case of the related compound [Fe(ptz)6](BF4)2 (Decurtins et al. Inorg. Chem. 1985, 24, 2174), there is no hysteresis due to a first-order crystallographic phase transition, nor is there a hysteresis induced by external pressure as in the mixed crystal [Zn1-xFex(ptz)6](BF4)2, x = 0.1 (Jeftić et al. J. Phys. Chem. Solids 1996, 57, 1743). However, in [Fe(ptz)6](PF6)2, the interaction constant Γ is found to be very close to the critical value above which a hysteresis solely due to the cooperative effects is expected. In addition, high-spin → low-spin relaxation measurements were performed under external pressures of up to 1 kbar in the temperature interval between 50 and 60 K. An external pressure of 1 kbar accelerates the high-spin → low-spin relaxation by 1 order of magnitude.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Friday December 08 2017